1 What Gri Is
Gri is a language for drawing scientific diagrams such as x-y graphs, contours, vector fields, and images. The Gri language is extensible, well-tested and fully documented. The output is in the PostScript page description language.

2 How to Run Gri
Normally Gri is run non-interactively. At the system prompt, type gri foo.gr1 on the file foo.gr1, creating a PostScript file called foo.ps. If the script name ends in .gr1, then there is no need to type the suffix. Several command-line options exist; type gri -help to see them, or consult the manual.
Occasionally you might want to run Gri interactively. To do this, type gri at the system prompt, and then type Gri commands at the Gri prompt, using quit to get out of Gri.

3 Overview of Gri Language
3.1 Syntax
Commands normally appear one per line, although ending a line with back-slash causes Gri to scan the next line also. Comments may be inserted at the end of non-continued lines by preceeding the comment by a hash-code (#). Gri allows the usual suite of programming structures, such as loops and if-statements; additionally, new commands may be added to Gri easily (see section 3.7).

3.2 Built-in Commands
Here are the first words of the built-in Gri commands:
cd close convert create debug
delete differentiate draw expecting filter
flip get help if ignore
input insert interpolate list ls
mask move new open pwd
query quit read regress reorder
rescale resize return rewind set
show skip smooth sprint superuser
system write
To get more information on a given command, e.g. the open command, type help open in an interactive Gri session, or C-M-i gri commands open in an emacs editing session, or info commands open at the system level.

3.3 Mathematics
Whenever Gri expects to see a number in a command, one may substitute a mathematical expression written in reverse polish notation (RPN) notation. RPN expressions are enclosed in braces and preceded by the word rpn, e.g.,
set x size { rpn 5 2.64 / } # Make width be 5 inches
x *= { rpn 1 2 / } # Add 0.5 to x values
y *= { rpn y mean } # De-mean y column
x *= { rpn x 0 + } # Subtract first value

3.4 Variables (for Storing Numbers)
User-defined variables have names that begin and end with periods (like .offset); variables defined by gri (which you may alter if you wish) have names that begin and end with two periods (like ..xsize..). To list the variables use show variables. Each of the following commands accomplishes the same thing, making the plot 2 cm wider. (Gri uses .xsize., to store the width of the plot,
..xsize.. = { rpn ..xsize.. 2 0 + }
..xsize.. *= 2
set x size { rpn ..xsize.. 2 0 + } # x size bigger 2

3.5 Synonyms (for Storing Strings)
Synonyms have names which begin with backslash (like \\name). To list the synonyms use show synonyms. Synonyms can be embedded within strings or used raw, e.g.,\
dir = mydir
query /filename "What's the data file?" ("file.dat"
open mydir//filename
read columns x y
draw curve
draw title "Data in \filename in dir \mydir"

3.6 Strings and Math Symbols
Strings are enclosed in double quotes. As in \TeX, superscripts and subscripts are enclosed in dollar signs. Subscripts are proceed by underscore, superscripts by caret, Superscripts or subscripts consisting of more than one character are encased in braces.
Gri handles Greek letters and mathematical symbols as \TeX does: they are enclosed in dollar signs and have backslash as the first character. Most Greek letters are available, along with several mathematical symbols but complicated \LaTeX macros like \[\text{\textbackslash frac{\{\}}{\}} \] are not available. Examples:
set x name "\\x^8.08"
draw title "$\alpha\text{\textbackslash dim}\$ as fcn of α"

3.7 Extending Gri
You can create new Gri commands in your commandfile or in your ~/.gri file. Commands in ~/.gri can be used anywhere they are your personal extensions to Gri. New commands defined in your commandfile exist only within that file. The example below defines a new command which is invoked by Landscape Big. The command name (which should begin with upper case letters, to avoid clashing with future built-in commands in gri) is enclosed in angled single-quotes. Optional help lines follow. The body of the command starts after a line with an opening brace, and ends before a line with a closing brace.
'landscape Big'
Plot in landscape mode, big size
{
 set page landscape
 set x margin 2
 set x size 25
 set y margin 2
 set y size 15
}
open file,dat
read columns x y
close
landscape big
draw curve
quit

4 Editing Gri in GNU Emacs
A gri-mode is available for editing Gri commandfiles in emacs. It provides completion of Gri commands, a quick interface to the gri manual about the command being edited, useful pull-down menus, code formatitation and the usual indentation, comment placement, etc. Consult the Gri manual for a full description. To use gri-mode, put lines like the following in your ~/.emacs file.

;;; Gri mode
(setq auto-mode-alist
 (acons ("\gri" . gri-mode) auto-mode-alist))

5 Documentation and User Group
An info manual is available at the system level and inside Emacs. A PostScript manual is also online, along with a cookbook of Gri examples. Since Unix has no standard place to store PostScript manuals, you must consult your system manual to find these files. A World Wide Web manual is available at http://gri.sourceforge.net. There are Gri mailing lists and discussion groups at this site as well.
6. Example – Linegraph

Suppose the file example1.dat contains data in two columns separated by white space. The following shows how to plot data with lines connecting the points. To get symbols without lines substitute draw symbols for draw curve; to get both symbols and lines, use both draw commands. If you have several curves which cross, use draw curve overlying, which white out a border below each curve, yielding a visual cue that lets the eye trace the individual curves easily,

```
# Example1.gri -- linegraph using data in a file
open example1.dat  # Open the data file
read columns x y z # Read (x,y)
draw curve         # Draw curve stored in (x,y)
```

You’ll notice that there was no need to ask that axes be drawn. They will be automatically determined (based on the data that were read in) and drawn just after the draw curve command. (Gri likes to draw axes, and you’ve got to ask it not to do so, if you don’t want them.) Also, note that Gri was not instructed to close the data file. This is done automatically at termination. One could insert a close command after the read command, if desired; this is helpful when you wish to work with many data files sequentially.

The axes are labeled x and y. To change that, and to add a title, do as follows:

```
open example1.dat
read columns x y
set x name "Time, s"
set y name "Distance, m"
draw curve
draw title "Trajectory of fluid motion"
```

To get a thicker curve, say 2 points wide, you could do

```
open example1.dat
read columns x y
set line width 2
draw curve
```

To get a dashed line,

```
open example1.dat
read columns x y
set dash
draw curve
```

To get a red line,

```
open example1.dat
read columns x y
draw axes
set color red
draw curve
```

Note in the above that the axes were drawn before the color was set to red, so they will come out black. Otherwise both the curve and the axes would be red.

7. Example – Contour Graph

Gri can plot contour graphs of either gridded or ungridded data. Several methods are provided for gridding data. The following example shows how to grid randomly distributed (x,y,z) data and plot contours,

```
# Example 5 - Contouring ungridded data, from figure # 5 of Koch et al., 1983, J. Climate Appl. Met., # volume 22, pages 1487-1503.
open example6.dat
read columns x y z
close
set x size 12
set x axis 0 12 2
set y size 10
set y axis 0 10 2
draw axes
set line width symbol 0.2
set symbol size 0.2
draw symbol bullet
set font size 8
draw values
set x grid 0 12 0.25
set y grid 0 10 0.25
convert columns to grid
# Uncomment next line to smooth the grid:
# smooth grid data
set font size 10
draw contour 0 40 2
set font size 12
draw title "Data from Fig 5 Koch et al., 1983"
quit
```

Note that a quit command has been included, although it is not required, since Gri quits when it reaches the end of the command file anyway.

8. Example – Image Graph

Gri can draw images in BW and color. The following example shows how to plot a satellite image.

```
# Example 6 -- Plot IR image of Gulf of Maine
# define characteristics of norda images
\oval = "9"    # 0 in image
\value = "30.5" # 265 in image
.r. = 128  # row
.c. = 128  # cols
.pixel_width = 2
.km. = \{rpm .c. .pixel_width .*
# get filenames
query \filename "Image file?" ("example6image.dat")
query \maskname "Mask file?" ("example6mask.dat")
# get data
open \filename binary
set image range \oval \value
read image .r. .c. box 0 0 .km. .km.
close
open \maskname binary
read image mask .r. .c.
close
# find out what grayscale method to use
query \histo "Flatten histogram?" ("no" "yes")
query \Tv "T/deg for white on page?" ("10")
query \Tb "T/deg for black on page?" ("15")
# set up scales.
set x size 12.8
set y size 12.8
set x name "km"
set y name "km"
set x axis 0 .km. 32
set y axis 0 .km. 32
# plot image, grayscale, and histogram
if {rpm \histo "yes" =}
   set image grayscale using histogram \black \Tb white \Tv
else
   set image grayscale black \Tb white \Tv
end if
draw image
draw image palette left \Tv right \Tb
draw image histogram
if {rpm \histo "yes" =}
   draw title "Grayscale histogram enhanced"
else
draw title "Grayscale linear IR to T b"
end if
```

(c) 2001, Dan E. Kelley

See also cmrefcard, a companion reference card,